
Generative AI Technology – Generative Machine Learning Can Construct 
Smooth Chemical Search Spaces for Efficient Drug Discovery1

Generative AI Technology
Generative Machine Learning Can Construct Smooth 
Chemical Search Spaces for Efficient Drug Discovery

2022



Generative AI Technology – Generative Machine Learning Can Construct 
Smooth Chemical Search Spaces for Efficient Drug Discovery2

Introduction
The fundamental steps of rational drug design include the 
identification of a clinically relevant target protein, the discovery 
of “hit” ligands that weakly modulate the target protein in the 
de sired manner, and the optimization of selected hits for high 
po tency against the target, low potency against all related 
off-targets, and good absorption, distribution, metabolism, ex-
cretion, and toxicity (ADMET). Target identification and the opti-
mization of selected hits are informed by biology and medicinal 
chemistry, respectively. In contrast, the initial discovery of 
hits that are active against the target, and can be effectively 
optimized, is more dependent on exhaustive searching and 
luck. Conventional approaches for hit discovery are expensive, 
inaccurate, and can only explore a minuscule fraction of the full 
space of synthesiz able, drug-like molecules. 

Generative machine learning (ML) promises to efficiently op timize more 

accurate estimates of binding affinity and other phar macological properties 

over the entirety of drug-like chemical space. Rather than exhaustively 

testing a screening library or making small changes to the best known 

compounds, generative ML maps chemical space to a smooth search 

space in which small moves correspond to small changes in potency, 

ADMET, etc. Within this search space, a diverse set of potent, selective, lead-

like, and novel hits can be found efficiently. These hits can be drawn from 

the full extent of make-on-demand compound li braries comprising tens of 

billions of molecules, or even from de novo synthetic space. Hits can be 

jointly optimized for many prop erties simultaneously, making subsequent 

lead optimization eas ier, faster, and less expensive.
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The Limits Of (Virtual)  
High Throughput Screening

Drug hunters often identify novel initial hits by testing large libraries of 
compounds, either experimentally via high throughput screening (HTS); 
or computationally via virtual high throughput screening (VHTS).1 HTS is 
expensive, and costs increase in pro portion to the size of the screening 
library. While tens of billions of compounds are available for purchase, HTS 
is generally lim ited to between thousands and millions of compounds. 
VHTS ex pands the fraction of chemical space searched while minimizing 
experimental costs by computationally predicting binding affinity on a 
fixed library of drug-like molecules, and selecting only a small fraction with 
desirable predicted properties for further wet lab investigation.

VHTS may be performed using a ligand-based or structure-based 
pharmacophore. Such pharmacophores comprise signifi cant ligand-
protein interactions (hydrogen bonds, ionic, hydrophobic, etc) that are 
predicted to be consistent amongst strong binders (yielding a ligand-
based pharmacophore) or are predicted to be consistent with the protein 
target (producing a structure-based pharmacophore). A chemical library 
can then be screened for compounds with low-energy conformers 
that match these pharmacophoric interactions, while avoiding obvious 
steric clashes with the target protein. Pharma cophores sidestep any 
mechanistic simu lation of the dynamics of ligand-protein binding, 
maximizing computational effi ciency, but their disregard for the physics of 
binding sharply limits their ability to generalize.
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Binding affinity for VHTS may also be predicted using molecular docking, 
which uses the 3D structure of the target protein and knowledge of ligand-
protein interac tions to infer favorable binding modes of the ligand via a 
semi-heuristic minimiza tion of the free energy. The resulting esti mate 
more accurately captures the physics of binding than a pharmacophore 
model. Nevertheless, the free energy of binding is strongly affected by 
reorganization of the network of water molecules surrounding the ligand 
and protein, the deformation of the target protein induced by the binding of 
the ligand, and the loss of configura tional entropy upon binding. These phe-
nomena are difficult to capture accurately without a series of explicit solvent 
molecu lar dynamics (MD) simulations of every atom over time, requiring 
overwhelming computation.

Novel chemistries must be explored to discover new classes of compounds 
with superior properties, and to avoid existing patents. Fortunately, 
the chemical space available for drug discovery is astronomi cally 
large. Commercial make-on-de mand libraries include tens of billions of 
compounds, and are growing at an expo nential rate. De novo synthesis can 
easily access many orders of magnitude more compounds, and the full 
space of drug-like molecules is estimated to be between 1020 and 1060.2,3

On the other hand, the cost of HTS and VHTS scale linearly with library 
size. Even molecular docking cannot be run ex haustively on increasingly 
large make-on-demand libraries, let alone the full space of synthetically 
accessible, drug-like mole cules. Alternative approaches to efficiently 
optimize over large chemical spaces, based upon more accurate estimates 
of experimental binding affinity and other molecular properties, are required 
to leverage progress in synthetic techniques for hit discovery.

Novel chemistries must be explored to 
discover new classes of compounds with 
superior properties, and to avoid existing 
patents. Fortunately, the chemical space 
available for drug discovery is  
astronomi cally large.
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Rather than explicitly modeling the ligand-protein binding process from 
first principles, it is possible to take a data-dri ven approach. Ligand- and 
structure-based pharmacophores are a simple example of this in which 
the activity of a query ligand is predicted based upon overlap with the 
pharmacophore of known actives. Quantitative structure-activity rela-
tionship (QSAR) models utilize data more flexibly, by applying simple 
machine learn ing (ML) techniques (typically decision trees, support vector 
machines, or neural networks) to features such as physico chemical 
properties or molecular frag ments, to predict experimental activity.4 
 
In general, these data-driven tech niques define a rule that separates actives 
from inactives based upon a set of train able parameters. For a ligand-based 
pharmacophore, the rule may be a thresh old for the intersection-over-
union of the pharmacophoric features of the query lig and versus the target 
pharmacophore. QSAR models may divide actives from in actives using a 
hyperplane in the space defined by the input features (linear mod els),  
a hyperplane in a space defined by nonlinear transformations of the input 
fea tures (support vector machine or neural network), or a succession of 
thresholds on individual input features (decision trees). 
 
Since around 2009, a deep learning revolution has transformed 
ML.5 Whereas conventional machine learning algorithms used networks 
with one or two sequential layers of processing on carefully engi neered 
features, deep learning algorithms have grown to thousands of sequential 
layers, hundreds of billions of parameters, and learn their own input features 
directly from the data. Such powerful deep learn ing models, with more 
complicated rules separating actives from inactives, promise to support 
more accurate activity predic tion. However, they must generalize far be yond 
the experimental data used to train the models. 
 
The cheminformatics community gen erally believes QSAR models can 
interpo late between data points, but not extrapolate outside of the available 
data, and thus cannot be used to perform VHTS over large, diverse libraries. 
Considerable effort has been devoted to characterizing the applicability 
domains of QSAR models based upon structural or physicochemical 
fingerprints, within which models are ex pected to interpolate accurately.6 
 

Deep Learning Promises to Improve 
Molecular Property Prediction
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In contrast, deep learning algorithms extrapolate accurately in domains like 
im ages, text, and speech. Small, semantically irrelevant changes in images, 
including shifts, scales, and rotations, induce enor mous changes in the 
set of pixels that de fine an image. As shown in Figure 1, the pixel-based 
representations of images that depict the same class of object (eg, a cat) are 
almost as far from each other as they are from images that depict different 
ob ject classes (eg, dogs, cars, houses). As a result, image classification in 
pixel space requires extrapolation from distant data points of the same class, 
rather than inter polation from nearby data points from dif ferent classes. 

Deep learning algorithms neverthe less achieve excellent classification per-
formance when trained on datasets comparable in size to those available 
for drug discovery. The most popular image dataset for machine learning is 
probably ImageNet, which has ~1,000 “actives” for each of 1,000 classes. 
State-of-the-art deep learning algorithms predict the cor rect class, out of 1,000 
possibilities, on over 88% of test images; comparable to the 95% accuracy 
achieved by humans.7,8 This exceptional performance is only pos sible because 
deep learning algorithms construct a representation that is smooth with 
respect to image semantics, rather than pixels, as shown in Figure 1.

The size of ImageNet is analogous to BindingDB, which has over 1M 
activity data points on over 500k ligands and thousands of protein 
targets.9 Carefully designed deep learning algorithms thus promise to 
significantly improve the accu racy of molecular property prediction 
and optimization. To realize their full potential, such algorithms must 
complement the structure of the input just as image recog nition 

Figure 1 – 2d embedding (t-SNE) of images (left) and their labels (right) based upon their pixel 
representation (A) and representations constructed by a deep learning algorithm (B). In the native pixel 
representation, nearest neighbors are rarely of the same class, and extrapolation is difficult. The deep 
learning representation naturally organizes images by class, and extrapolation is easy.
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algorithms embody the invariance of image content to small shifts, and 
ad dress the noise endemic to pharmacolog ical datasets.

Recently, ML has achieved notable successes in domains closely related to 
drug discovery. AlphaFold uses ML to pre dict the 3D structure of a protein 
based upon sequence and structure information from a large database of 
homologous proteins.10 Fragments of 3D structure from similar proteins 
are nonlinearly stitched to gether, with residue sequences that exhibit 
complementary mutations across many homologous proteins encouraged 
to re main bound together. AlphaFold’s output corresponds to a holo 
structure. It does not capture the change in protein conforma tion induced 
by a particular small mole cule, and cannot be used directly to predict 
ligand-protein interactions. Nevertheless, complementary applications of 
ML prom ise to infer the relationship between struc ture and properties of 
small-molecule ligands.
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Conventional drug dis covery approaches 
are like searching for an address in a 
phone book, where busi ness names are 
in alphabetical order but geographical 
location is unordered.

Small changes in molecular structure can induce large changes in 
molecular properties. This phenomenon, particularly evident across activity 
cliffs, makes opti mization difficult and inefficient.11 The sort of hill climbing 
performed by medicinal chemists during lead optimization, in which small 
modifications of the current best molecule are evaluated experimen tally and 
the best modification is used as the basis for the next round of optimiza tion, 
will generally get stuck in a bad local optimum. These local optima are like 
foothills surrounding a large mountain. A path that goes directly uphill from 
a ran dom starting point usually gets trapped in one of these foothills. There 
is no sequence of small, beneficial modifications from such a bad local 
optimum to the best pos sible compound.

This problem cannot be fully solved by using (V)HTS to find hits from which 
to begin lead optimization. While (V)HTS searches thousands or millions of 
starting points, chemical space is so vast, with as many as 1060 molecules, 
that no com pound in a fixed screening library is likely to lie near the global 
optimum. Moreover, it is all but impossible to predict the quality of the 
final optimized lead from the start ing hit considered by (V)HTS, and only a 
handful of (V)HTS hits can be subject to lead optimization.

Rather than searching within the na tive space of molecular structures, 
gener ative ML transforms to a learned search space where nearby 
molecules have simi lar properties (binding affinity, ADMET, etc), but are 
less structurally similar, as shown in Figure 2. Conventional drug dis covery 
approaches are like searching for an address in a phone book, where 
busi ness names are in alphabetical order but geographical location is 
unordered. Gen erative ML is like searching for an address on a map, where 
such spatially-based ex ploration is intuitive and efficient.

Generative Ml Searches 
Efficiently Over Chemical Space
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Figure 2 – Multi-property minimization of ICM doscking score and logP in the search space learned by a 
variational autoencoder. (A) Predicted docking scores and logP, (B) true docking scores and logP, and (C) the 
corresponding molecular graphs for a 2D slice through the search space. An optimization trajectory through 
the search space is shown in (A) and (B), and the molecules along the optimization trajectory highlighted 
wth a blue box in (C).

(A) Predicted ICM docking scores Predicted logP

Generative ML constructs this smooth, natural search space by learning 
a pair of mappings: an encoder from molecules to the search space, and 
a decoder from the search space back to the space of mole cules. The 
mappings are trained so that molecular properties, such as binding affinity 
and ADMET, change smoothly with respect to, and can be predicted easily 
and accurately from, the position in the search space. When properly 
formulated, with a term encouraging the encoder from mol ecules to 
search space to contain no extra neous information, this algorithm is 
called a variational autoencoder.12 Deep learn ing algorithms, such as deep 
neural net works, are used for the encoder and decoder of such variational 
autoencoders, to maximize performance.

It is easy to optimize within the search space for many predicted properties 
jointly, and then map to the associated molecule. Optimization is less likely 
to be come stuck in a local optimum because the search space is much 
smoother with respect to the properties than the native space of molecular 
structures. Just as you can find the top of a hill without exhaus tively 
searching its entire surface by repeat edly taking a step in the direction of 
steepest ascent, optimization within the search space implicitly searches over 
all molecules that can be represented in the search space. Figure 2 shows 

(B) True ICM docking scores True  logP (c ) Molecular graphs from a sampled 2D grid in the generative ML search space
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such a search space constructed for ICM docking scores of SARS-CoV-2 
3CLpro, a computational proxy for binding affinity that can be evaluated 
exhaustively over a dense grid of molecules.

Other popular generative ML algo rithms include generative adversarial net-
works (GANs).13 GANs train a decoder mapping from the search space to 
mole cules, so that molecules decoded from random points in the search 
space cannot be distinguished from real drug-like mol ecules by another ML 
algorithm. GANs were the first generative ML algorithm to produce high-
resolution images, but they suffer from mode collapse: the GAN re quires that 
all generated outputs look re alistic, but is satisfied even if only a minuscule 
fraction of possible realistic out puts are ever generated. Moreover, GANs 
require severe approximations to accom modate discrete domains like 
molecular graphs, rather than continuous domains like RGB pixel intensities. 
While GANs have been very popular for both images and molecules, 
variational autoencoders offer distinct advantages for drug discov ery.
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The Impact Of Generative Ml 
On Lead Discovery
Generative ML allows chemical space to be searched more broadly than is 
pos sible with conventional techniques. HTS and VHTS are limited to fixed 
libraries that are small relative to the entirety of chemi cal space, and are 
biased toward heavily explored and patented regions. Lead op timization only 
considers small chemical changes from the hits identified by HTS or VHTS. 
In contrast, generative ML can search the full extent of make-on-demand 
libraries with tens of billions of com pounds. It can even search over less-
ex plored but still synthesizable regions of chemical space, in which novel 
chemical matter remains to be discovered, and patents are less dense. 

Generative ML can optimize many properties simultaneously within the 
search space, as shown in Figure 2. Rather than maximizing potency 
against the primary target alone, as is standard for hit discov ery with HTS 
or VHTS, generative ML can jointly optimize hits for selectivity, ADMET, 
and physicochemical properties as well. These critical pharmacological 
properties are often in conflict; for instance, optimization for potency tends 
to increase molecule size, lipophilicity, and potency for related off-targets. 
It is difficult for medicinal chemists to actively balance the effect of a 
chemical modification against a dozen different crite ria; generative ML 
naturally accounts for these trade-offs. As a result of this joint optimization, 
hits identified by gener ative ML are expected to be more likely to be true, 
developable hits. Joint optimization for selectivity tends to eliminate assay 
in terfering, reactive, or aggregating compounds because they are unlikely to 
be selective. Moreover, because jointly optimized hits from generative ML 
are already designed for selectivity and ADMET from the start, they should 
be easier, faster, and less ex pensive to optimize. Altogether, generative ML 
promises to reduce the cost and increase the speed of drug discovery.

ML can even search over less-ex plored 
but still synthesizable regions of chemical 
space, in which novel chemical matter 
remains to be discovered, and patents are 
less dense.
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